
INT. JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.1, JUNE 2008 

 

 71 

Voltage Stability Assessment via Continuation 

Power Flow Method 
 

M. Z. Laton
1
, I. Musirin

2
, IEEE Member, T. K. Abdul Rahman

3
, IEEE SeniorMember 

 

 
1
Abstract — This paper presents a potential 

algorithm for continuation power flow method in 

voltage stability assessment. Modified 

continuation power flow method termed as 

MCBF was developed which solved the solution 

of bifurcation point at the Q-V curve. The 

solvability of power flow at the bifurcation point 

beyond the maximum loadability point of a 

system was achieved through the implementation 

of predictor-corrector technique. QV curve was 

automatically plotted once the bifurcation point 

has been reached. Voltage stability analysis was 

subsequently conducted utilizing the MCPF 

solutions. Comparative studies performed with 

respect to the conventional power flow technique 

revealed the strength of the proposed MCPF; 

which was validated on a standard IEEE 

reliability test (RTS) system. 

 

Index Terms — Bifurcation, continuation 

power flow, predictor-corrector, voltage stability 

index. 

  

I. INTRODUCTION 

 
oltage reduction in a power system 

network can be monitored when reactive 

power loading is increased accordingly. This 

phenomenon can be achieved by performing 

load flow or power flow study on a power 

system network. Nonetheless, conventional 

load flow studies have demonstrated failure in 

giving solution at its bifurcation point. This is 
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due to the singularity of Jacobian matrix 
formed during the load flow study. This 

problem can be solved by using continuation 

power flow, which remains well condition at 

the saddle node bifurcation point. In recent 

years, an instability usually termed as voltage 

instability has been observed to be responsible 

for several major networks collapses in many 

countries [1-2]. Voltage stability has become 

critical issue since the continuous load varies 

along with economical and environmental 

constrains which has led the power systems to 
operate close to their limits, along with stability 

margin reduction [1]. At this point any 

unexpected rise in the load level can cause 

voltage collapse phenomena. This phenomenon 

has made the voltage stability condition as a 

crucial aspect in the power system operation 

and planning. The solution curve is an 

important element in voltage stability 

assessment, which can be computed by 

continuation power flow method. The 

continuation power flow methods are powerful 
and useful tools for obtaining solution curves 

for general non-linear algebraic equation by 

automatically changing the value of a 

parameter [1]. This solution curve indicates the 

critical point of voltage stability limit, which is 

at the nose of the curve. Voltage stability limit 

is the maximum loading point (MLP) which 

can be computed by many tools or continuation 

method. Several continuation power flow 

techniques have been reported in published 

literature. Among the previous techniques are 

continuation power flow (CPF), CPFLOW (the 
revision of continuation power flow) [2], and 

Homotopy method. The Homotopy method 

constructs a Homotopy from an augmented 

load flow equation and a polynomial with 

known solutions and the load flow solutions 

are obtained by tracing the homotopy curves 

starting from the known solutions of the 

V
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Step 1:  

The continuation power flow technique 
starts from base condition which using the 

conventional Newton-Raphson’s load-flow 

solution to compute the base parameter. 

polynomial [3]. The Homotopy type of 

continuation is considered not efficient method 

since it required large computational scale 

while the singularity of the Jacobian matrix is 
still remained [3]. On the other hand, the 

CPFLOW Continuation method is slightly a 

modified CPF technique; which uses the same 

continuation parameter in their techniques to 

search equilibrium solution. The difference is 

the adoption of Secant-base Predictor and 

pseudo arclength-based corrector method in 

their algorithm. This method is one of the best 

continuation methods as reported by Hiroyuki 

Mori [4] based on its contribution in speeding 

up of the computation time significantly along 
with straightforward algorithm. Tiranuchit and 

Thomas [5] had reported work on a posturing 

strategy against voltage collapse instabilities in 

power system. This work is rather 

concentrating the efforts for voltage instability 

avoidance scheme. On the other hand, the work 

conducted by Musirin and Rahman in [6] in 

deriving a new voltage stability index has 

revealed the importance of having an indicator 

for the identification of maximum loadability 

point at a selected load bus. Its flexibility in 

terms of applications to voltage stability 
evaluation and other exploratory studies 

implied the merit of the developed index. 

Voltage instability has been profoundly 

associated with voltage collapse and cascading 

outages as reported in [7-12]. The failure of 

achieving solutions utilizing the conventional 

load flow can be alleviated by the introduction 

of continuation power flow (CPF) as discussed 

earlier. However, many other studies have also 

concerned on the CPF solving technique as 

reported in [13-16]. One of the popular CPF 
techniques is the one developed by Ajjarapu in 

[3]. 

This paper presents the development of 

modified continuation power flow (MCPF) to 

solve the failure in convergence experienced in 

the conventional power flow. The modified 

CPF technique was based on the technique 

proposed by Ajjarapu [3]. The developed 

technique has also identified the nose point of 

Q-V curve, which was discovered to be the 

failure in the conventional power flow. 

Comparative studies have been performed with 
ordinary voltage stability analysis and results 

have revealed the merit of MCPF over 

conventional power flow. Subsequent studies 

by means of voltage stability assessment 

utilizing a pre-developed voltage stability index 
[6] were also conducted. The developed 

algorithm was validated on a standard test 

system which has yielded promising results. 

Comparative studies performed with respect to 

conventional load flow technique revealed the 

strength of the proposed MCPF technique. 

 

II. CONTINUATION POWER FLOW 

 

The predictor-corrector continuation method 

uses predict and correct scheme [3]. The 
predictor method forecasted the next value of 

the parameter of the load flow when the load 

parameter initially varies from the base 

condition. As shown in Fig. 1, the predictor 

starts from the known solution and predict the 

next equilibrium solution. The corrector 

method corrects the value of the predicted 

solution. The objective of this scheme is to find 

a path of equilibrium solution from the 

Jacobian matrix starting at base condition at 

stable equilibrium point (SEP).  

 

 
 

Fig 1.   An illustration of predictor-corrector 
continuation 

 

A. Modified Continuation Power Flow 

Algorithm 

The MCPF algorithms are explained in 

detail step-by-step as follows:- 
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Step 2: 

Reformulate the load-flow equation to contain 

a load parameter λ and write the reformulated 
load-flow equation into matrix form known as 

Jacobian matrix [ ]J  as in equation (7). 

 

Step 3:  

Calculate the Jacobian matrix of the 

reformulated load-flow equation (eqn 7) base 

on the base case value of the load-flow 

parameter. 
 

Step 4:  

Compute the minimum singular value by using 

equation below: - 

             [ ]
1

1

min

−
−

= Jσ                          (1) 

Step 5:  

Specify the continuation parameter by choosing 

from one of the state variables of base case 

value or from equilibrium solution. In this 

paper the continuation parameter for base value 

is λ equals to zero and the next continuation 
parameter is chosen by step 9. 
Fig..2.   Modified continuation power flow algorithm 

 

 

 

Step 6: 

Calculate the tangent vector element base on 

the tangent vector of the continuation 

parameter used. 

 

Step 7:  

Compute the predicted value base on the step 

size chosen.  

 
Step 8: 

Correct the error found in the predictor by 

using modified Newton-Raphson’s load-flow 

solution.    

 

Step 9: 

Choose the next continuation parameter based 

on the tangent element intersection. 

 

Step 10:  

Check the critical point. The process is 
continued from step 4 until step 9 until the 

critical point has been passed (the tangent 

component dλ is equal to zero or passing zero 
for upper portion of the curve and load 

parameter λ is equal to zero or passing zero for 
lower portion of the curve). 

 

The flow chart of the continuation power flow 

is shown in Fig. 2. 

 

A1. Reformulation of Load-Flow Equation 

Algorithm 

The load-flow equations are reformulated in 

order to explain the step-by-step algorithm for 

the usage in the MCPF. 
 

Step 1: 

Consider the conventional load-flow equation 

defined as: - 

 

0=−− cidigi PPP                          (2) 

0=−− cidigi QQQ                                    (3) 

 

Where;  ( )∑
=

−−=
n

j

ijjiijjici YVVP
1

cos θθθ  

and  ( )∑
=

−−=
n

j

ijjiijjici YVVQ
1

sin θθθ  

 



                                                                                 M. Z. LATON ET. AL.: VOLTAGE STABILITY ASSESSMENT VIA CONTINUATION 

 

 74 

For each bus “i” of an n bus system, the 

subscripts g, d and c denote the generation, 

load or demand and injection bus respectively. 

The voltage at bus i and j are Vi∠θi and Vj∠θj 

respectively and the admittance matrix element 

Ybus of the (i,j)th element is denote by Yij∠θij. 

 
Step 2: 

The value of λ is inserted into load-flow 
equation corresponding to weak bus (for this 

paper bus 3 in the 5-bus test system) and the 

equation becomes: - 

    0
gi di ci

P P P− − =                               (4) 

 

0
gi di ci

Q Q Q λ− − − =                            (5) 

 

Where the value of λ is varied from 0 to 
maximum variation and state as follows: - 

 

0 ≤ λ ≤ λcritical                               (6) 
 

Step 3: 

Compute the Jacobian matrix of the 
reformulated load-flow equation (equation 3 

and 4 for each PV and PQ bus) base on base 

case parameter value. The vector function of 

several vectors of the Jacobian matrix [ ]J  

from reformulated load-flow equation can be 

written as: - 
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A2. Tangent Vector Computation Algorithm 

The procedures for the tangent vector 

computation algorithm are given in the 

following step-by-step technique:- 

 
Step 1: 

Consider the whole set of load-flow equations 

defined as: - 

( ), , 0G Vθ λ =                                 (8) 

 

Step 2: 

Take the derivative of both side of equation (8) 

and the equation becomes: - 

 

0
V

G d G dV G dθ λθ λ+ + =               (9) 

 

Step 3: 

Factorize equation (9) and the equation 

becomes: - 

[ ]V

d

G G G dV

d

θ λ

θ

λ

 
  = 
  

0
              (10) 

 

Where λθ danddVd ,  denoted the direction 

tangent to the solution path and λθ GandGG
V

,  

denoted the partial derivative G with respect to 

θ, V and λ and it is equal to Jacobian matrix 
equation (7). 

 

Step 4: 
Assigned the tangent vector component 

corresponding to the continuation parameter 

used as +1 or –1 depends on how the solution 

curve changing. In this paper the tangent vector 

dλ equals +1 (solution curve increase) and dV3 
equals –1 (solution curve decrease). 

 

Step 5:  

Insert the tangent vector component into 

equation (10) and compute the other tangent 

vector value. 

 

A3. Predictor Algorithm 

Predictor algorithm was implemented as one 

of the components in MCPF. The algorithm is 

given by the following step-by-step 

procedures:- 

 
Step 1: 

Choose the suitable step size. In this study the 

step size is assigned a constant value 0.001. 

 

Step 2: 

Predict the next equilibrium solution by the 

equation below:  
 

Predict the next equilibrium solution by the 

equation below:  
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P

P

P

d

V V h dV

d

θ θ θ

λ λ λ

     
     

= +     
          

                       (11) 

 

Where θp, Vp and λp denoted the predicted 

values. θ; V and λ denoted the current 
parameter values, h denoted the step size and 

dθ, dV and dλ denoted the tangent vector value. 
 

A4. Corrector Algorithm 

 The corrector algorithm is explained in 

detail according to the following step-by-step 

procedures:- 

 

Step 1: 

Assign the predicted value corresponding to the 

continuation parameter used as the correct 
value. This value is constant throughout the 

corrector process.  

 

Step 2: 

Correct the error found in the predictor process 

(the predicted value other than the correct value 

in step 1) by using modified Newton-

Raphson’s load-flow solution expressed as 

follows: - 

 

V

K

P
G G G

V Q
X

n

θ

θ
λ

λ

∆ ∆   
     ∆ = ∆     
     ∆   

       (12) 

 

Where ∆θ, ∆V and ∆λ denoted the changes in 

each parameter θ, V and λ respectively, ∆P and 

∆Q denoted the change in active power and 
reactive power respectively, n denoted the 

correct value corresponding to the continuation 

parameter and Xk denoted the row vector with 

all element equal to zero except the element 

corresponding to continuation parameter which 

equals one. 

 

Step 3:  

Correct the value of each parameter, θ, V and λ 
using the following equation: - 

 

C P

C P

C P

V V V

θ θ θ

λ λ λ

∆     
     

= + ∆     
     ∆     

                      (13) 

 

Where θc, Vc and λc denoted the corrected 

value, θp, Vp and λp denoted the predicted 

value and ∆θ, ∆V and ∆λ  denoted the changes 
in each parameter. 

  

Fig. 3: The 5-bus test system 

 

Step 4: 

Check all the changes of ∆θ, ∆V, ∆P and ∆Q, if 
not less than the specified accuracy the step 2 is 

continued again. 

 

A5. Choosing Next Continuation Parameter 

Algorithm 

 In order to perform the chosen of the next 

continuation parameter, the following step-by-

step procedures are implemented:- 

 

Step1: 

Compute the distance of λ from the point of 

Jacobian matrix singularity by using the 
equation below: - 

 

min
Dλ σ λ= −          (14) 

 

Step 2: 

Compute the component of tangent vector by 
the equation below: - 

 

c o
tθ θ θ= −                          (15) 

 

V c o
t V V= −                          (16) 

 

Where θt and Vt  denoted the component of 

tangent vector corresponding to PV and PQ 

bus, θc and Vc denoted the correct equilibrium 

solution and θo and Vo denoted the base case 
value. 
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Step 3: 

Check the maximum value of the tangent 

vector component and Dλ by the equation 
below: - 

 

{ }max 2 3 2, , ,n Vm Vnt t t t t t Dθ θ θ λ+= K K    (17) 

 

If the maximum value is one of the tangent 

vector components, the next continuation 

parameter should be changed to the 

corresponding maximum tangent vector, 

otherwise if the maximum value is Dλ, the next 

continuation parameter should be λ. 
 

III. VOLTAGE  STABILITY  INDEX 

 
Voltage stability condition is consequently 

implemented in this study incorporating the 

developed MCPF algorithm. The instrument is 

a line-based voltage stability index termed as 

FVSI, which was developed by I. Musirin and 

T.K.A. Rahman in [6]. The index equation is 

given by: - 

 

FVSIij = f(Z,Qj,Vj, X)                        (18) 

 

Where Z, X, Qj, and Vi denote the line 

impedance, line reactance, reactive power at 
the receiving end and sending end Voltage 

respectively.  This index indicates the voltage 

stability condition of a line in a system. The 

line with FVSI value closest to 1.0 implies that 

the line is unstable which could cause entire 

system instability leading to system collapse. 

 

A. Algorithm for Voltage Stability Assessment  

Voltage stability condition of a power 

system is assessed by evaluating the proposed 

line-based voltage stability index, FVSI. 
Several steps are implemented in order to 

carry out the voltage stability analysis.  The 

following procedures were implemented in the 

voltage stability analysis:-   

i. Run the load flow program (Newton-

Raphson) at the base case. 

ii. Use the results from the load flow 

solution to compute the line index, 

FVSI. 

iii. If the index is smaller than 1.00, 

increase the reactive load power and 

repeat steps [ii] and [iii] until it 

reaches 1.00 or solution fails to 

converge. 

iv. Record the highest index and the 

corresponding line. 
v. Plot individual graph for line index 

(FVSI) versus reactive load variation 

at the tested load bus. This will 

identify the sensitive line with respect 

to the load bus. 

vi. Repeat the whole process, i.e., steps 

[i] to [v] for other load buses in the 

system. 

vii. Plot the curves for bus voltages versus 

reactive load variation on the same 

axis. This will estimate/determine the 
voltage at the stability limit for each 

load bus and hence the weak bus will 

be identified. 

 

The whole algorithms are simplified in the 

form of flow chart appeared in Fig. 4. 

 

IV. RESULTS AND DISCUSSION 

 

The developed MCPF has been tested on the 

standard 5-bus system, with its single line 

diagram shown in Fig. 3. Bus 3 was taken as 
the test bus for the implementation of MCPF. 

The base condition reactive power at bus 3 was 

varied gradually until a sharp point of the Q-V 

curve is obtained. The variation of Q at bus 3 

along with observation of the bus voltage is 

illustrated in Fig. 5. 

 

 

Fig. 5.  QV curve performed using MCPF with bus 3 
loaded 
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From Fig. 5, it is observed that the increment 

of reactive power at bus 3 through the MCPF 

has reduced the bus voltage. This process 

continues until the critical point is found as 

indicated in the Fig. 5. At this nose point, the 

MCPF is able to find the load flow solution, 

which implies that the Jacobian matrix is non-

singular. A singular Jacobian matrix that was 

normally produced by the conventional load 

flow will lead to the divergence of load flow as 
shown in Fig. 6. The lower portion produced of 

the Q-V curve as in the Fig. 5 are computed by 

the MCPF, which cannot be obtained in the 

conventional load flow. The smoothed Q-V 

curves for both portions are computed by the 

implementation of predictor and corrector in 

MCPF. 

From Fig. 5, the upper portion of the Q-V 

curve implies the stable operating region for 

the system. On the other hand, the lower 

portion indicates unstable operating region, 
which requires high current to operate as also 

reported in [5].  

 

 
 

Fig. 6.   Solution for MCPF and conventional load 
flow solution at the nose point 

 

 
 

Fig. 7.   The profile of FVSI obtained using MCPF 

The profile of FVSI with the reactive load 

variation is illustrated in Fig. 7 and Fig. 8. The 

accelerated increase of the curve showed in the 

Fig. 6 represent the lower portion of the nose 

Q-V curve as in Fig. 5 which require very high 

current to operate. The voltage stability 

condition and the critical line referred to a 

particular bus are determined by the FVSI value 

close to 1.00 while the weak bus is determined 

by the maximum permissible load for the 
individual bus in the system [14]. The result of 

the stable voltage referred to line is shown in 

Fig. 7. From Fig. 7, it is observed that MCPF, 

in which it is impossible to be achieved using 

the conventional load flow techniques. From 

the figure, FVSI value increased abruptly on 

the second manifold of QV curve. It means 

that, the lower portion of the QV curve will 

correspond to the FVSI profile beyond the 

critical point. This region has been profoundly 

identified as the unstable region of the voltage 
stability condition. On the other hand, Fig. 

illustrates the profile of FVSI with respect to 

the Q variation. Apparently, above the Qmax, 

FVSI value shoots up to above unity implying 

unstable condition of the system. 

 

 
 

Fig. 8.   The critical line correspond to the weakest 
bus 

V. CONCLUSION 

 

Voltage stability assessment via 

continuation power flow technique has been 
presented in this paper. An algorithm for a 

modified continuation power flow (MCPF) 

utilizing predictor, corrector and tangent 

techniques was developed. This has overcome 

the burden in reaching the solution experienced 

in the traditional power flow technique. It was 
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discovered that the CPF outperformed 

conventional load flow in identifying the 

bifurcation point. This has also solved the 

insolvability in the conventional load flow. 
Comparative studies performed with respect to 

the conventional load flow technique have 

highlighted the merit of the proposed 

technique. 
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