
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH                                                                       https://doi.org/10.24191/jeesr.v20i1.015 

108 
 

Abstract— In this paper, Titanium Aluminium Cloride (Ti3AlC2) 
is used as a saturable absorber (SA) to generate Q-switched pulses 
in an erbium-doped fibre laser (EDFL) cavity. The Ti3AlC2 film 
was prepared based mixing the material with polyvinyl alcohol 
(PVA) solution. It was added into the laser cavity by sandwiching 
the film between two fiber ferrules. By controlling the cavity's loss 
and gain, a stable Q-switched operation was achieved. When the 
pumping power was increased from 58.88 to 97.62 mW, the 
repetition frequency was increased from 59.52 to 67.52 kHz, 
resulting in the shortest pulse width of 3.3 µs. The Q-switched 
EDFL operated at a centre wavelength of 1560 nm, had a 
maximum pulse energy of 138.76 nJ, and a slope efficiency of 9.36 
percent. The results demonstrate that Ti3AlC2 can be used as a SA 
for realizing a laser device for various applications including 
optical communications. 
 

Index Terms— Q-switched, 2D material,saturable absorber. 

I. INTRODUCTION 
HE saturable absorption mechanism was used to generate 
laser pulses based on Q-switching mechanism. Once the 
beam enters the fibre laser cavity and reaches the saturable 

absorber (SA), the photons are absorbed by the electron 
contained within the SA, allowing the electron to leap to a 
higher energy state. The saturation of SA allows the generation 
of pulses in kHz regime. In recent years, the research interests 
are surged in this topic due to their utility in a variety of 
industrial applications, including  spectroscopy, sensing and 
medicine [1,2]. Extensive researches have also been conducted 
to improve their speed and efficiency.  

Q-switched fibre lasers are advantageous for a variety of 
applications, including laser cutting, remote sensing, and 
medical [3]. Fiber lasers combine high beam quality with cost-
effective technology, and as a result, numerous papers have 
been published on this subject in recent years [4]. Numerous 
techniques, including nonlinear polarisation rotation (NPR) 
[5,6], semiconductor saturable absorber (SESAMs) [7-9], 
carbon nanotubes (CNTs) [10-11], and graphene [12], have 
been demonstrated to generate Q-switched fibre lasers with 
saturable absorber (SA). When low light is absorbed, the light 
intensity increases. However, these SAs have inherent 
weaknesses that limit their effectiveness as SAs due to factors 
such as high sensitivity to the environment, complex optical 
alignment, complex fabrication process, or narrow operating 
bandwidth [13,14]. Recently, due to their graphene-like 
electronic band structure, topological insulators, black 
phosphorous, and transition metal dichalcogenides (TMDs) 
have been investigated [15]. TMD materials have garnered the 
most interest for short pulse generation among 2D 
nanomaterials due to their complementary electronic properties 
[16]. MXene, a newly synthesised 2D material, has also 
recently been the subject of an extensive study [17,18]. 
However, its parent phase, the MAX phase (layered metal 
carbides and nitrides), has not been fully explored in terms of 
its ability to generate near-infrared pulses. To be precise, the 
MAX phase (bulk) is an early version of MXene (2D) before 
A-group elements (such as aluminium) were removed from the 
composition. It is as exceptional as its precursor in terms of 
electrical conductivity, thermodynamic stability of 
nanolaminates, high damage tolerance at room temperature, 
mechanical strength, and oxidation resistance [19,20]. 

Titanium Aluminum Carbide (Ti2AlC) is the MAX phase 
family's first material. It demonstrates efficiency in the 1.55-m 
region with a 2:1:1 composition [13]. We investigate the 
potential of a MAX phase Ti3AlC2 material as a SA for 
operation in 1.5 µm region. Here, a Ti3AlC2 thin film is prepared 
by embedding  its compound into polyvinyl alcohol (PVA). The 
film is inserted into an erbium doped fibre (EDFL) cavity 
through a sandwich-structured fiber-ferrule device. By 
increasing the pump power from 55.88 mW to 97.62 mW, a 
stable Q-switched pulse train is formed at 1560 nm. 

II. CHARACTERIZATION AND PREPARATION OF SA 
Field-emission scanning electron microscopy (FESEM) and 

energy dispersive spectroscopy (EDS) were used to 
characterise the Ti3AlC2 thin film. The FESEM image of the 
film is shown in Fig. 1(a), which indicates the Ti3AlC2 particles 
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has a size in a range from a few to tens of micrometres. The 
elemental composition of Ti3AlC2 was determined using 
energy-dispersive X-ray spectroscopy (EDX) as shown in Fig. 
1(b). The EDX analysis indicates few strong peaks that 
corresponding to titanium (Ti), aluminium (Al), and carbon (C). 
This proved that the film consists of  Ti3AlC2 elements. The 
Ti3AlC2 thin film was synthesised by mixing Ti3AlC2 powder 
with a solution of polyvinyl alcohol (PVA). To begin, 1 gram 
of polyvinyl alcohol (PVA) powder was dissolved in 120 ml 
distilled water. A magnetic stirrer was used to stir the mixture 
at 300 rpm for approximately 24 hours on a hotplate set to 
200°C. Following that, the PVA solution was poured into a 
clean beaker along with 10mg of Ti3AlC2 powder. After 24 
hours of stirring at room temperature, the Ti3AlC2 PVA solution 
was obtained. Following that, a two-hour ultrasonication was 
used to remove any particles that had not been consumed.  
 

 
Fig. 1.Characteristics of Ti3AlC2 film based saturable absorber (a) FESEM 

image (b) EDX analysis  
 

 
Fig. 2. Preparation of Ti3AlC2 film based saturable absorber (a) Ti3AlC2 

solution that fully dissolved (b) peeling Ti3AlC2 thin film that dried in a petri 
dish (c)Ti3AlC2 film on the ferrule  

 
Fig. 2(a) shows the prepared Ti3AlC2 PVA solution [21]in a 

25ml bottle.The fully dissolved solution was then poured onto 
a petri dish. It was allowed to dry at room temperature for at 
least 48 hours to form a Ti3AlC2 thin film as shown in Fig. 2. 
(b). This film was peeled and cut to a dimension of 1 mm x 1 

mm from the petri dish in order to be used as a SA. The 
concentration of the SA film in relation to its thickness is a 
critical parameter for pulse generation in passively Q-switched 
fiber laser. As illustrated in Fig. 2(c), the thin film is placed on 
a fibre ferrule for pulse generation. To avoid damaging the film 
SA, the Q-switched operation was carried out at a low or 
moderate pump power. 

III. EXPERIMENTAL ARRANGEMENTS 
In this work, we used an Erbium-doped fibre laser (EDFL) 

cavity to test the SA as shown in Fig. 3. The Erbium-doped fiber 
(EDF) was pumped in forward direction by a 980nm laser diode 
through a 980/1550nm Wavelength Division Multiplexer 
(WDM) to provide gain to the cavity. It has a length of 2.4 m 
long with a mode field diameter of 5.8 m and a fibre diameter 
of 125.4 m at 980nm. A polarization-independent isolator (PI-
ISO) was used in the ring cavity, ensuring only unidirectional 
light and preventing light from moving backward inside the 
laser cavity. A Ti3AlC2 film was placed inside the cavity 
through a sandwich-structured fiber-ferrule device to function 
as a Q-switcher. Index matching gel was utilised to adhere a 
Ti3AlC2 SA thin film to the surface of a fiber-ferrule. SA 
generates Q-switched laser pulses by continuously modulating 
the cavity's Q-factor. An optical output coupler with a 90/10 
split ratio was used to harvest 10% of the lasing output while 
returning 90% of the lasing within the laser cavity through the 
WDM's 1550 nm port. The output of the laser cavity was linked 
to an oscilloscope (GWINSTEK: GDS-3352) for analysis and a 
7.8GHz radio frequency (RF) spectrum analyzer (ANRITSU, 
MS2683A) for measurement of the output pulse train. To 
capture the output power at various pump power and the laser 
spectrum an optical power meter (Thorlabs PM 100D) and 0.02 
nm resolution optical spectrum analyzer (OSA, Yokogawa 
AQ6370C) were respectively used. 

 

 
 

Fig. 3. Schematic diagram of the Q-switched fiber laser utilizing Ti3AlC2 PVA 
as  saturable absorber. 

 

IV. RESULTS AND DISCUSSION 
Passively Q-switched pulses are generated and remained 

stable as the pump laser diode's input power was adjusted 
within 55.88 to 97.62 mW. The output spectrum of the Q-
switched EDFL is illustrated in Fig. 4, as it was measured by an 
OSA at a pump power of 97.62 mW within a span 100 
wavelength range of 1510 nm to 1610 nm. Inset figure shows 
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the enlarged spectrum, indicating that the laser peaked at 1560 
nm. The stability of pulses at the 97.62 nm pump power was 
also measured using an RF spectrum analyzer as demonstrated 
in Fig. 5. The RF spectrum has recorded numerous harmonics 
over a wideband frequency range within a span of 1000 kHz. 
At 67.02 kHz fundamental frequency, the generated Q-switched 
signal has a signal-to-noise ratio (SNR) of 67.93 dB. The result 
indicates the exceptional Q-switching stability.  

 

 
Fig 4. Output spectrum of Q-switched Ti3AlC2 at pump power of  97.62mW  

 
Fig 5. RF spectrum at 97.62 mW  

 
The Q-switching pulse trains were stable and maintained a 

uniform distribution throughout the pump power range of 55.58 
to 97.62 mW as shown in Fig. 6. Fig. 6 (a) depicts a simple Q-
switched laser pulse train obtained from the digital oscilloscope 
trace when the pump power was set to 55.58 mW. The pulse 
train is repeated at a frequency of 52.14 kHz. As the power of 
the input pump was increased to 76.75 mW and 97.62 mW, the 
repetition rate was also improved to 59.52 kHz and 67.52 kHz 
as shown in Figs. 6 (b) and (c), respectively. The pulse duration, 
on the other hand, reduces with the increase pump power. All 
the pulse trains are stable and uniform, which indicates the 
stability of the Q-switching operation. As we increased the 
pump power to greater than 97.6 mW, the Q-switching pulses 
became unstable and then disappeared. The laser was converted 
to CW operation up to the maximum pump power of 200 mW. 
However, the Q-switching operation was regained as the pump 
power was reduced back to below 97.62 mW. This indicates 
that the damage threshold of the SA film is higher than the 
maximum power of the pump of 200 mW. These findings 

indicate that MAX phase Ti3AlC2 is a viable SA material for Q-
switching application especially at low pumping strengths. 

 
 

 
(a) 

   
(b) 

 
(c) 

Fig 6. Oscilloscope pulse train at three different pump powers of (a) 55.88mW 
(b) 76.75mW (c) 97.62mW 

 
The evaluation of pulse energy, average output power, 

repetition  rate, and pulse width as functions of pump power, 
are carried out and the results are summarised in Figs. 7 and 8. 
The average output power increased steadily from 5.41mW to 
9.30mW, as illustrated in Fig. 7, which plots the output power 
and pulse energy against the pump power. At a pump power of 
97.62mW, the highest pulse energy of 138.76 nJ was obtained. 
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The pulse repetition rate and pulse width are plotted against the 
pump power in Fig. 8. The pulse rate increased from 52.14 to 
67.02kHz as the output power of the pump increased from 
55.88 to 97.62 mW, while the pulse width decreased from 4.5 
to 3.3s. The linear relationships are typical for a Q-switched 
laser since the amount of energy delivered to the cavity was 
incraesed as the pump power increases until the SA becomes 
saturated. 

 

 
Fig 7. Output characteristics within 55.88mW to 97.62 mW of pump power of 

pulse energy  and average output power. 
 

 
Fig 8. Output characteristics within 55.88mW to 97.62 mW of pump power: 

of repetition rate and pulsewidth 
 

The proposed laser in this work is capable of producing a 
stable Q-switching output, indicating that a passive SA based 
on Ti3AlC2 has been successfully developed. Additionally, with 
Ti3AlC2, significant photonics application potential exists. The 
output performance of the proposed Ti3AlC2 SA is observed to 
be comparable with other SAs as shown in Table 1. This table 
summarizes the performance of various SA for Q-switching. 

V. CONCLUSION 
The Q-switched pulse generation was demonstrated in an EDFL 
cavity using Ti3AlC2 film-based SA. Self-starting and stable Q-
switched pulse trains were obtained and operated at a center 
wavelength of 1560 nm. The pulses have a shortest pulse width 
of 3.3 µs and a maximum o pulse energy of 138.76 nJ. The 
pulse frequencies are tunable between 52.14 and 67.02kHz as 

the pump power varies between 55.88 and 97.62 mW. In the 1.5 
µm wavelength region, the laser exhibits excellent Q-switching 
performance. 
 

TABLE I 
= COMPARISON OF OUTPUT PERFORMANCE BY DIFFERENT SAS FOR PASSIVE Q-

SWITCHING 
 

Materials 
of SA 

Max. 
Pulse 
Energy 
(nJ) 

Repetition 
Rate (kHz) 

Max. 
Output 
Power 
(mW) 

Min. 
Pulse 
Width 
(µs) 

Refs 

Eu2O3 162 60.1-68.6 11.1 3.6 [16.] 
Wse2 33.2 49.6 1.23 3.1 [22.] 
Ws2 28.9 50.26-67.2 28.9 1.94 [23.] 
Ti3C2Tx 125 70.67 ~ 96 12 2.31 [24.] 
Ti2AlC 22.58 16.14 ~ 27.45 0.62 4.88 [25.] 
TiSe2 79.28 24.5-73.79 5.85 1.31 [26.] 
Ti3AlC2 138.76 59.52 ~ 67.52 9.30 3.3 This work 
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