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Abstract—The imbalanced dataset is a common problem in the 
educational performance environment, where the number of 
students with poor performance is much less than those who 
perform well. This can create problems when predicting academic 
performance using machine learning algorithms, which assume 
that the datasets have a balanced distribution across all classes. 
We compared three resampling methods: SMOTE, Borderline 
SMOTE, and ADASYN, and used five different classifiers 
(Logistic Regression, Support Vector Machine, Naïve Bayes, K-
Nearest Neighbor, and Decision Tree) on three imbalanced 
educational datasets. We used five-fold cross-validation to assess 
two performance indicators: accuracy and recall. Although 
accuracy indicates the overall performance, we focus more on 
recall values because it is more incumbent to identify poor-
performing students so that necessary interventions can be 
executed promptly. Our results showed that when resampling 
improved recall values, ADASYN outperforms SMOTE and 
Borderline SMOTE consistently, better classifying the poor-
performing students. Overall, our results suggest that resampling 
methods can be effective in addressing the problem of imbalanced 
classification in academic performance. However, the choice of 
resampling method should be carefully considered, as the 
performance of different methods can vary depending on the 
classifier used. 
 
Index Terms —Academic performance, imbalanced classification, 
machine learning, resampling algorithms.  

I. INTRODUCTION 
persistent issue in tertiary education is students' poor 
academic performance, which delays graduation or, even 

worse, leads to dropout. Ideally, all engineering undergraduate 
students who enrol in their chosen university should complete 
their studies on time, satisfy all minimum requirements, and 
obtain all learning outcomes within the stipulated time outlined 

by the university. The task of understanding, modeling, and 
analyzing student performance in higher education institutions 
(HEI) presents considerable hurdles in terms of developing 
accurate diagnostic models since a myriad of factors needs 
tobeconsidered[1]–[4]. 

According to the Malaysian Ministry of Higher Education 
[5], delayed graduation causes greater financial costs for a 
university. Therefore, it becomes important to develop a model 
that accurately predicts students' performance. In the Mid-term 
report by Malaysia's Economic Planning Unit (EPU), among 
the priority areas emphasized in the 11th Malaysian Plan is 
concerted efforts towards raising the quality of graduates so 
they have better employment opportunities and contribute to 
economic growth [6].  

The potential to predict student performance paves the way 
for improving their educational outcomes by allowing 
educators to identify at-risk students, as indicated by lackluster 
GPAs, so that remedial targeted intervention could be 
implemented to avoid late graduation or, worse, immature 
withdrawals. To do this, HEIs can harvest data stored in their 
repositories. Nevertheless, evaluating a large volume of data to 
extract useful information is time-consuming if done manually; 
hence, educational Data Mining (EDM) can extract important 
and significant knowledge from the data [7]. A plethora of 
literature can be found on the applications of EDM using 
classifiers such as K-Nearest Neighbor (KNN), Support Vector 
Machine (SVM), Naïve Bayes (NB), Logistic Regression (LR), 
Decision Tree (DT) on an educational dataset in the context of 
predicting attrition and retention [8]–[10] and predicting 
academic performance [11]–[14]. However, finding a 
suitable machine learning model for correctly estimating 
student achievement remains difficult and active research. 

Despite much research that has successfully developed 
intelligent classifiers for predicting student academic 
performance using machine learning [13]–[15], the extant 
literature has sparsely given attention to cases of imbalanced 
educational data. Often overlooked, imbalanced datasets are 
nevertheless significant because the commonly used 
measurements of accuracy, applied as an indicator of a model's 
goodness of fit, can be misleading [7][16]–[18].  

Imbalanced data refers to problems where the dataset 
contains an unequal distribution of instances in some classes 
over others [19]. Due to the imbalance in the distribution of 
training data, conventional classifiers are frequently 
overwhelmed by the majority class and perform badly in the 
minority class. The problem is that when there are fewer 
observations in the minority class, building predictive 
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boundaries to separate the minority class from other classes 
becomes nontrivial. This means that the model may not 
recognize patterns and features from the minority and majority 
groups. Therefore, samples from the minority class are often 
misclassified as if they belong to the majority class. However, 
when imbalanced datasets are involved, predicting the minority 
class is often more of interest [20]. 

For example, in fraud detection [21], [22], most transactions 
are non-fraudulent; however, fraudulent transactions occur in 
exceptional cases. Since non-fraudulent transactions dominate 
the samples and fraudulent cases are unique, it is necessary to 
address the imbalanced dataset to predict fraudulent 
transactions. Another example is when trying to predict rare 
medical diagnoses, for example, cancer detection [23], where 
the emphasis is on being able to predict the positive case, which 
lies in the minority class. In predicting rare cases, it is important 
to predict the rare cases correctly so that the correct treatment 
can be administered to the patient. Performing a classification 
algorithm without addressing the issue of imbalanced training 
data and using accuracy as the model's performance indicator 
misleadingly leads to high accuracy.  

The same scenario happens in the educational domain, as 
highlighted by [24], where they investigated three educational 
datasets with three different modeling tasks: forum post 
classification, drop-out prediction, and predicting whether a 
student pass or fails. The imbalance of the three datasets is 
contributed by the male/female student ratio. Imbalance can 
also be in terms of the number of students who graduate on time 
being far greater than those who graduate late. In our work, the 
number of poor-performing students is significantly less than 
those who perform average and excellent, contributing to class 
imbalance, similar to[25]. 

A. Problems associated withimbalanced dataset 
The factors that influence the ability of a classifier to 

correctly identify the class labels are the size of the dataset, the 
separability of the classes, and the presence or absence of 
within-class clusters [26]–[29]. Sample size plays a crucial role 
in determining the goodness of a model. If a sample size is 
limited, finding patterns inherent to the small class is 
challenging, but the prediction error may decrease as the dataset 
increases. In [30], the authors investigate the effect of sample 
size and class distribution in assessing credit risk, emphasizing 
real-life imbalanced data sets. According to them, classification 
algorithms demonstrated varying levels of sample size 
sensitivity. When the sample size decreased, logistic regression 
and neural networks found a clear trend of deteriorating 
accuracy. However, the effect was much smaller than 
anticipated, indicating that reducing the sample size does not 
result in a major loss in performance which constitutes an 
important discovery for credit scoring.  

Class separability refers to how different the observations of 
the different classes are [29], [31]. And intuitively, the more 
different they are, the easier they are to classify. If patterns 
among the classes overlap, it becomes more complicated for an 
algorithm to find the boundaries that separate one class from 
another. On the other hand, linearly separable domains are 
insensitive to any amount of imbalance [28]. The authors in [28] 
also discovered that the more imbalanced a class causes an 
increase in concept complexity, and the lower number of 

sample sizes in the training set, the greater the influence of class 
imbalances on classifiers affected by the problem.  This 
discovery was attributed to high degrees of complexity and 
imbalance, in addition to small training setsizes, producing 
small subclusters that cannot be correctly 
categorized.  However, not all the classifiers were affected 
equally by the class imbalance problem: the decision tree was 
the most affected by class imbalance, Neural Networks (NN) 
demonstrated sensitivity variations, and Support Vector 
Machines (SVM) were the least susceptible, exhibiting 
immunity toward class imbalance. 

In classification problems, a single class can be composed of 
sub-clusters indicating that the class is not homogeneous. As 
explained by [32], a frequent issue encountered by 
classification algorithms is when samples of the same class are 
separated in the input space.  The idea that a class can be 
divided into several sub-clusters dispersed across the input 
space is common. The absence of homogeneity is especially 
troublesome in algorithms centered on dividing and conquering 
(e.g., decision trees) and set covering (e.g., rule induction), 
whereby the sub-clusters lead to the formation of small 
disjuncts. Sub-clusters within a class increase the complexity of 
the minority class, making it harder to detect the boundaries that 
separate the classes. 

In a nutshell, data imbalance per se does not automatically 
suggest that it is more difficult to build a model that correctly 
predicts the minority classes. Instead, factors like having 
sufficient samples for the algorithms to learn from, the classes 
being well separated, and the presence or absence of sub-
clusters also play a role [26], [29].  

B. Strategies to address the imbalance. 
Throughout the literature, there is a consistent trend pointing 

to two types of solutions for the imbalance classification 
problem. The first is the data-level or also referred to as the 
external approach, and the second type is the algorithm-level or 
internal approach  [33]–[39]. 

Data-level approaches refer to altering the class distribution 
of the training set. The algorithm-level requires the 
development of new classification algorithms or changing 
the existing classification algorithms to overcome the bias 
imposed by the class imbalance [39]. According to Estabrooks 
et al. [35], the downside of algorithm-level, although they may 
be highly efficient in certain circumstances, they are algorithm-
dependent. This is a concern since datasets 
with different features may be better classified by different 
algorithms, and it would be infeasible to apply the proposed 
change for the class imbalance problem from one classifier to 
another. Alternatively, data-level methods are model-
independent and, therefore, more flexible. We concur with [35] 
hence this article is limited to investigating only data-level 
methods to overcome the class imbalance.  

Data-level methods can be grouped into oversampling and 
undersampling. Oversampling approaches increase the number 
of examples in the minority class. Undersampling methods 
eliminate instances from the majority class, especially in 
problems where a big dataset is available, and the observations 
provide redundant information  [34]. Random under-sampling 
is simple to implement and does not require a learning 
algorithm. It also has the advantage of reducing the size of the 
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training set, which may improve the learning speed. However, 
under-sampling may remove potentially useful instances from 
the majority class, which may reduce the accuracy of the 
classifier. 

The Synthetic Minority Oversampling Technique (SMOTE) 
creates new observations from the minority class by 
interpolation instead of merely duplicating the samples in the 
minority class like random undersampling [18]. The new 
samples from the minority class are not identical to the original 
ones, and this way, it overcomes the main limitation associated 
with random oversampling. However, if outliers from the 
minority class are present in the majority class, SMOTE 
generates synthetic samples between the minority class and the 
outliers [40]. This can lead to increased bias in the synthetic 
samples and, ultimately, a decrease in the overall model 
performance. To overcome the limitation of SMOTE, 
Borderline SMOTE has been suggested by [41], which 
generates synthetic minority class samples along the borderline 
between the minority and majority classes to increase the 
samples where the samples are harder to classify.  

Nevertheless, Borderline-SMOTE does not create a 
discriminative model. Instead, samples in the minority class are 
assigned weights according to their density and use the SMOTE 
algorithm to generate synthetic examples for those with the 
lowest density. ADASYN, on the other hand, uses a weighted 
distribution of the minority class to create the new synthetic 
data, which is weighted according to how difficult the 
observations are to be learned so that more synthetic data is 
generated for the minority class [42]. This helps reduce the bias 
introduced by class imbalance and adaptively shifts the 
classification decision boundary toward the difficult examples.  

Therefore, our research compares three resampling 
algorithms: Synthetic Minority Oversampling Technique 
(SMOTE), Borderline SMOTE, and Adaptive Synthetic 
(ADASYN) algorithm that addresses class imbalance to obtain 
a more representative measure of a model's performance. 
Because the effect of imbalanced data is seldomly addressed in 
academic performance prediction problems, this article aims to: 

1) Compare the performance of resampling algorithms 
on imbalanced data to predict students' performance to 
determine whether resampling methods solve all class 
imbalance problems.   

2) To assess the performance of different ML algorithms 
for multi-class classification problems involving 
academic performance prediction considering 
imbalanced data with cognitive, non-cognitive, and 
demographic input features.  

 
Our study contributes to the literature on the use of 

resampling methods for improving classifier performance in 
imbalanced datasets and emphasizes the importance of 
selecting an appropriate resampling method for a specific 
dataset and classifier. 

The rest of the paper is organized into four sections. The next 
section begins with a review of the extant literature on 
algorithms used to overcome the imbalanced dataset problem to 
predict academic performance. Section 3 discusses the research 
methodology implemented to achieve the objective of this 
work, while the fourth section offers the results and a detailed 
discussion of the findings once the imbalanced data are 

addressed and the impact on model performance. The final 
section concludes the current work and suggestions for future 
work.  

II. LITERATURE REVIEW 
Machine learning algorithms have recently been actively 

used to predict students' grades, attrition rate, or graduating on 
time (GOT).  Even though academic performance prediction 
data almost always involve some form of imbalance, it is 
insufficiently discussed in the literature. This is evident when a 
search of the terms ("classification"  OR  "multi-
classification"  OR  "multi-class") AND ("academic" AND 
"student") AND 
( "performance"  OR  "achievement"  OR  "success" ) in the 
English language in the SCOPUS database resulted in 1477 
results. However, when the term "imbalance*" was included 
along with the previous terms, a stark reduction of only 27 
articles was found. Next, the titles and abstracts of all 27 articles 
were checked to remove articles that do not explicitly 
investigate resampling methods to combat imbalance in the 
academic dataset, of which eight articles were removed. An 
example of removed articles included A Novel Stress State 
Assessment Method for College Students Based on EEG. Eight 
of the remaining 19 articles could not be included because they 
are inaccessible via the university library's subscription. The 
summary of the 11 articles is presented in Table I.  

 
TABLE I 

SUMMARY OF ARTICLES THAT HAVE USED RESAMPLING METHODS TO 
ADDRESS THE CLASS IMBALANCE IN THE EDUCATIONAL DOMAIN 

 Input Resampling 
Methods 

ML Algorithm Instances 

[43] A S, U DT, LR., RF, SVM 4396 

[44] A, D, 
SB 

S, BS, Ada DT, LR, KNN, NB, 
RF, SVM  

550 

[45] A S NB, NN, SVM 44 

[46] A S, Ada, 
ROS, 
SENN 

DNN, DT, GB, KNN, 
LR, RF SVM 

4266 

[25] A S DT, KNN, LR, NB, 
RF, SVM 

1282  

[47] A, D, 
SE 

S, RUS, 
ROS 

DT, NB, NN, KNN, 
SVM 

350 

[48] A S RF 2406 
[49] A U DT, E, NN, RF,  6882 
[50] A, D O, U, S  DT, LR, NN, SVM 21,654 
[51] A, D O, U DT, NB, NN 117 
[52] NA S DT, NB, SVM Set 1: 20492 

Set 2: 936 
Set 3: 151 
Set 4: 1024 

*A= Academic, D= Demographics, SB = Social-Behavioral, SE = Socio-
economic, S = SMOTE, U= Undersampling, BS= Borderline SMOTE, Ada = 
AdaBoost, ROS = Random Oversampling, SENN = SMOTE-ENN, RUS= 
Random Undersampling, O = Oversampling, DT = Decision Tree, LR= 
Logistic Regression, RF = Random Forest, SVM = Support Vector Machine, , 
KNN = K-Nearest Neighbor, NB= Naïve Bayes,, NN = Neural Network, 
DNN= Deep Neural Network, GB= Gradient Boosting, E = Ensemble, NA = 
Not available. 

Referring to Table I, it can be deduced that SMOTE is among 
the more popular methods of addressing the imbalance problem 
in the educational domain. In [43], an early detection system 
using 4396 academic data instances, taken only from the first 
four semesters to predict students with a high tendency to fail 

https://www-scopus-com.ezaccess.library.uitm.edu.my/record/display.uri?eid=2-s2.0-85132247743&origin=resultslist&sort=plf-f&src=s&st1=%22academic%22+AND+%22student%22&st2=%22classification%22+OR+%22multi-classification%22+OR+%22multi-class%22&nlo=&nlr=&nls=&sid=41eec3e42a70d676a8363da8c05149b3&sot=b&sdt=cl&cluster=scolang%2c%22English%22%2ct&sl=213&s=%28TITLE-ABS-KEY%28%22academic%22+AND+%22student%22%29+AND+TITLE-ABS-KEY%28%22classification%22+OR+%22multi-classification%22+OR+%22multi-class%22%29+AND+TITLE-ABS-KEY%28imbalance*%29+AND+TITLE-ABS-KEY%28%22performance%22+OR+%22achievement%22+OR+%22success%22%29%29&relpos=4&citeCnt=0&searchTerm=
https://www-scopus-com.ezaccess.library.uitm.edu.my/record/display.uri?eid=2-s2.0-85132247743&origin=resultslist&sort=plf-f&src=s&st1=%22academic%22+AND+%22student%22&st2=%22classification%22+OR+%22multi-classification%22+OR+%22multi-class%22&nlo=&nlr=&nls=&sid=41eec3e42a70d676a8363da8c05149b3&sot=b&sdt=cl&cluster=scolang%2c%22English%22%2ct&sl=213&s=%28TITLE-ABS-KEY%28%22academic%22+AND+%22student%22%29+AND+TITLE-ABS-KEY%28%22classification%22+OR+%22multi-classification%22+OR+%22multi-class%22%29+AND+TITLE-ABS-KEY%28imbalance*%29+AND+TITLE-ABS-KEY%28%22performance%22+OR+%22achievement%22+OR+%22success%22%29%29&relpos=4&citeCnt=0&searchTerm=
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was accomplished by comparing SMOTE with the 
undersampling method on four classifiers and found that the 
combination of SMOTE using RBF kernel with SVM resulted 
in the best performance with accuracy: 94.37%; precision: 
94.37%; recall: 84.93%; F-measure: 74.18%. Similar trends can 
be found in [44] and [46], where both works compared 
SMOTE, SMOTE variations, and ADASYN and found that 
SMOTE consistently resulted in the best performance. 
Therefore, we conclude that it is imperative to include SMOTE 
as one of the candidates for the resampling method in our work. 
Borderline SMOTE is also considered since it only oversamples 
in the minority class that is close to the decision boundary, as 
opposed to SMOTE, which increases the size of the minority 
class without any discrimination, which suggests that 
Borderline SMOTE is more targeted in its approach and can 
lead to more accurate models [41]. Although [44] reported that 
the best performance in terms of the highest accuracy was 
achieved with SMOTE with an accuracy of 94.54%, a closer 
look at the recall values from Table IV of their article showed 
that ADASYN had comparatively similar recall performance as 
that of SMOTE. Authors in [46] also concluded that the best 
resampling method was SMOTE, but when zooming in on 
Table 9 in their article, it showed that ADASYN had 
comparable recall performance as SMOTE. Hence why we 
included ADASYN in our resampling methods to be 
investigated.  

III. METHODOLOGY 
This paper aims to compare the performance of different 

oversampling methods, such as SMOTE, Borderline SMOTE, 
and ADASYN, to overcome the challenges of class imbalance. 
Each oversampling method is tested on five different classifiers 
to find the combination that results in the best performance 
measure in terms of accuracy and recall. All models were 
executed in Python with the Anaconda platform. The 
methodology used to attain these goals is depicted in Fig. 1with 
the pseudocode presented in Algorithm 1, where the subsequent 
sections elaborate in detail the steps entailed in each phase. 

A. Dataset curation. 
To ascertain whether resampling methods impacted the recall 

values, especially for the poor-performing students, this study 
utilizes three datasets: original data collected from the UiTM 
students and another dataset from Kaggle. Our research differs 
from most of the research in Table I because, on top of 
academic and demographic data, we also consider students' 
motivational tendencies and how they study. This is true for 
datasets 1 and 2, which consider students' motivational 
inclination via the Motivated Strategies for Learning 
Questionnaire (MSLQ) [53]. It is a self-report questionnaire 
designed to identify students' motivational tendencies and 
learning methods. Students rated themselves using a seven-
point Likert scale ranging from 'not at all true of me' to 'very 
true of me'. Two elements comprise the MSLQ: motivation  

 
Fig.1.Framework of multi-class imbalanced data for academic performance 
prediction 

 
and learning techniques. The motivational scale has six 
subscales (intrinsic goal orientation, extrinsic goal orientation, 
task value, control of learning beliefs, self-efficacy, and test 
anxiety). The motivation scale consists of 31 items that measure 
students' goals and values, opinions of their ability to succeed 
in the course, and anxiety around course exams. The learning 
techniques consist of nine subscales: rehearsal, elaboration, 
organization, critical thinking, metacognitive self-regulation, 
time and study environment, effort regulation, peer learning, 
and help-seeking. Thirty-one items examine students' 
perceptions of their cognitive and metacognitive techniques, 
while the remaining 19 questions deal with students' 
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management of diverse educational materials. There are 81 
items in the 1991 version of the MSLQ. Following [53] and 
[54], scales were created by averaging scale elements. For 
example, the composite score for metacognitive self-regulation 
(MSR) was determined by adding the scores of all twelve 
questions and dividing them by twelve. The following 
paragraphs briefly describe each dataset, and the summary of 
all three datasets used in our work is provided in Table II, while 
Table III denotes the input features and predicted outcomes for 
all three datasets. 

 
TABLE II 

SUMMARY OF THE DATASETS USED 
Set Total  Training Data  Test Data 

  P A E P A E 
1 188 13 68 50 6 30 21 
2 702 56 270 165 24 116 71 
3 480 89 148 99 38 63 43 

*P= Poor, A = Average, E= Excellent 
 

B. Data Collection 
Dataset 1 

One hundred eighty-eight final-year students from one 
engineering school in UiTM participated in the study. They 
were all from the same cohort, March 2018 intake. Out of 188, 
86 (46%) are female, and 102 (54%) are male. Their CGPA 
upon graduation was acquired from the Students Information 
and Management System (SIMS) and is utilized as the predicted 
output, designated as CGPA8. This is a multi-class 
classification since CGPA8 is divided into three classes: 'Poor' 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 3), 'Average' (3 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 3.5), and 'Excellent' 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 3.5).  

 
Dataset 2 

In dataset two, 702 final-year students from four engineering 
schools in UiTM participated in the study. Among the 702, 410 
are male students (58.40%), and the remaining 292 (41.60%) 
are female. Their final semester CGPA, which is the predicted 
output in this research, is separated into three classes: 'Poor' 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 3), 'Average' (3 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < 3.5) and 'Excellent' 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 3.5) making this a multi-class classification problem.  
 
Dataset 3 

This dataset is obtained from Kaggle [55]. It is a set of 
educational data gathered by the learning management system 
(LMS) Kalboard 360, a multi-agent learning management 
system (LMS) developed to promote learning with cutting-edge 
technologies. The data comprises 480 student records and 16 
features. The characteristics are divided into three primary 
groups: (1) Demographic, (2) Academic background, and (3) 
Behavioural characteristics such as raising a hand in class, 
using school resources, responding to a parent survey, and 
school satisfaction. There are 305 males and 175 females in the 
sample from various countries. The dataset was collected over 
two academic semesters: 245 student records were gathered 
during the first semester, and 235 were gathered during the 
second semester. The predicted output is the cumulative marks, 
where the students were divided into three classes: low-level: 
marks between 0 to 69, middle-level: marks between 70 to 89; 

and high-level: marks between 90 to 100. A detailed 
explanation of the dataset can be found in [56]. 

 
TABLE III  

LIST OF INPUT FEATURES AND PREDICTED OUTCOMES FOR ALL THREE 
DATASETS. 

Category/ Set Set 1 Set 2 Set 3 

Demographic Gender, 
Household 

Income 

Gender, 
Household 

Income 

Nationality, 
Gender, Place of 

Birth, Parent 
responsible for 

student 
Academic Academic 

Program, 
grades for 

five common 
subjects, GPA 
and CGPA for 

Sem 1 and 
Sem 2, GPA 

for Sem 8  

Diploma 
CGPA, GPA 
for semesters 

3 to 8, the 
grade for  
Calculus 
subject 

Educational Stages 
(school levels), 
Grade Levels, 

Section ID, 
Semester, Course 

Topic, Student 
Absence Days 

Other Non-
cognitive: 

Intrinsic Goal 
Orientation, 

Extrinsic 
Goal 

Orientation, 
Task Value, 
Control Of 
Learning 

Beliefs, Self-
Efficacy for 

Learning and 
Performance, 
Test Anxiety, 

Rehearsal, 
Elaboration, 

Organization, 
Critical 

Thinking, 
Metacognitive 

Self-
Regulation, 
Time and 

Study 
Environment, 

Effort 
Regulation, 

Peer 
Learning, 

Help Seeking  

Non-
cognitive: 

Intrinsic Goal 
Orientation, 

Extrinsic 
Goal 

Orientation, 
Task Value, 
Control Of 
Learning 

Beliefs, Self-
Efficacy for 

Learning and 
Performance, 
Test Anxiety, 

Rehearsal, 
Elaboration, 

Organization, 
Critical 

Thinking, 
Metacognitive 

Self-
Regulation, 
Time and 

Study 
Environment, 

Effort 
Regulation, 

Peer 
Learning, 

Help Seeking 

Behavioral 
Features on 

Kalboard 360: 
Discussion groups, 
visited resources, 

raised hand in 
class, viewing 

announcements. 
Parents 

Participation: 
Parent Answering 

Survey, Parent 
School Satisfaction 

Predicted 
Outcome 

3 classes: 
Excellent, 

Average, Poor 
performance 

3 classes: 
Excellent, 

Average, Poor 
performance 

3 classes: Low, 
Middle, High 

 

C. Data Pre-processing 
Data pre-processing applies analytical techniques to convert 

an incomprehensible dataset into a meaningful and quality 
format that can be used for further processing [57]. This is 
necessary so that the programming language, Python, can read 
the information smoothly and ensure that the data is deprived 
of inconsistencies in training and testing the models in 
proceeding steps. Among the steps taken in our work: 

1. Data Cleaning: removes or corrects inaccurate or 
incomplete records from the dataset. It also involves dealing 
with missing values, outliers, and other inconsistencies. It is 
necessary to remove duplicate data because a student answered 
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the MSLQ survey more than once. Constant features that do not 
aid in learning are also removed.  

2. Data Transformation: transforming the data into a format 
compatible with Python. This includes normalizing data, 
transforming categorical variables into numerical variables, and 
scaling data.  

3. Data Integration: Combines multiple datasets into a single 
dataset. For datasets 1 and 2, the data are obtained from two 
sources (SIMS and Google form); hence it is necessary to 
identify, extract, and combine them into one .csv file.  

D. Data Splitting 
Data splitting is a common method used in machine learning 

to divide a dataset into two or more subsets. The purpose of data 
splitting is to provide separate sets of data for training and 
testing a machine learning model. We implemented a 70/30 
split, where the dataset is divided into two subsets: a training 
set that contains 70% of the data and a testing set that contains 
the remaining 30%. The training set is used to train the machine 
learning model, while the testing set is used to evaluate the 
model's performance. The data splitting ensures that the model 
is not overfitted to the training data. By using a separate testing 
set to evaluate the model's performance, we can ensure that the 
model has learned to make predictions that are accurate on the 
training data and new data.  

E. Resampling 
SMOTE 

According to [32], the SMOTE algorithm starts by setting the 
amount of oversampling, N, usually set to achieve an 
approximate 1:1 class distribution. First, it selects a positive 
class instance randomly from the training set. Then, it obtains 
the K-nearest neighbors of that instance. Finally, it randomly 
selects N of these neighbors and generates new samples by 
interpolating their feature vectors. To do this, it calculates the 
difference between the feature vector of the instance under 
consideration and each neighbor, multiplies this difference by a 
random number between 0 and 1, and adds it to the previous 
feature vector. This randomly creates a new synthetic sample at 
a point along the line segment between the original instance and 
its neighbor. 
 
Borderline SMOTE 

Borderline SMOTE is a variation of the SMOTE algorithm, 
which can generate new, synthetic data to increase the samples 
of the minority class in a dataset [41].The algorithm works by 
applying the k-nearest neighbors to the entire dataset. It would 
find and ignore the samples from the minority class if most 
neighbors are also from the minority class because these 
samples are easy to classify. It also ignores samples from the 
minority class if all its neighbors are from the majority class 
treating it as noise. It then finds the samples from the minority 
class located on the border between the classes, treating them 
as the danger group. These are called borderline samples. Once 
the borderline samples are identified, the algorithm creates new 
synthetic observations by interpolating between them and their 
nearest neighbors. This synthetic data is then added to the 
original dataset, increasing the number of minority samples.  
ADASYN 

The ADASYN algorithm uses a density distribution to 
automatically decide the number of synthetic samples that need 
to be generated for each minority data sample in an imbalanced 
dataset [42]. The density distribution measures the distribution 
of weights for different minority class samples based on how 
difficult they are to learn. By using the density distribution as a 
criterion, the ADASYN algorithm can generate a more 
balanced representation of the data distribution according to the 
desired balance level. This differs from the SMOTE algorithm, 
which produces equal numbers of synthetic samples for each 
minority data example. After resampling with ADASYN, most 
observations are created closer to the interface between the 
classes because more samples are generated from those samples 
that are harder to classify. And the situations that are harder to 
classify are those at the boundary between the two classes.  

F. Learning Algorithms 
Decision Tree (DT) 

The learning strategy for decision trees involves creating 
decision rules that partition the data into separate classes [58]. 
The decision tree algorithm begins by selecting an attribute for 
the root node and then recursively splits the data based on the 
selected attribute. The algorithm then uses an impurity measure 
to determine the best split. The tree grows until each node is 
completely pure, containing only one class. One of the 
challenges of using decision trees with imbalanced data is that 
it can lead to overfitting.  

 
Logistic regression (LR) 

Logistic regression uses a logistic function to estimate the 
probability of a given data point belonging to a given class [59]. 
The logistic regression model is trained using a maximum 
likelihood estimation, which finds the weights that maximize 
the probability of correctly predicting the class labels of the 
training data. The main difficulty with logistic regression when 
dealing with imbalanced data is that it tends to be biased toward 
the majority class. This means the model is more likely to 
predict the majority class than the minority class.  

 
Support Vector Machines (SVM) 

The goal of an SVM is to find the optimal boundary between 
different classes. To do this, SVMs use the maximum margin 
classifiers to separate the classes by finding the maximum 
distance between them [60]. SVM first takes the training data 
and converts it into a high-dimensional feature space. This is 
done using a kernel function, transforming the data into a 
higher-dimensional space. Next, the SVM finds the optimal 
boundary between the different classes. This boundary, called 
the maximum margin hyperplane, maximizes the distance 
between the classes. Once the maximum margin hyperplane has 
been found, the SVM uses it to predict new samples.  
Naïve Bayes (NB) 

The learning strategy for Naive Bayes uses the Bayes 
theorem to calculate the probability of an event occurring based 
on prior knowledge of certain events [61]. This is done by 
calculating individual probabilities for each event and 
multiplying them to get the overall probability. The learning 
difficulty with imbalanced data is that the data may not be 
representative of the population, which can lead to inaccurate 
predictions.  
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K-nearest neighbors (KNN) 

The K-nearest neighbors learning strategy classify data 
points based on their similarity to other data points in the 
training dataset [62]. KNN works by finding the k-nearest 
neighbors of a given data point (where k is a user-defined 
parameter), then assigning the data point to the most common 
class among those k-nearest neighbors. KNN has the advantage 
of being easy to understand and implement, and it can work 
with both continuous and categorical data. However, it can be 
difficult to use when dealing with imbalanced data, where one 
class is much more common than others. This can lead to 
overfitting, where the model performs well on the training 
dataset but poorly on unseen data.  

G. Model Performance  
The confusion metric in Table IV visualizes the number of 

correctly and incorrectly classified instances. In dataset 1 and 
2, the model's output was classified into one of three classes; 
excellent (A), average (B), and poor (C) performance. To make 
the labels uniform, the predicted outcomes in Dataset 3 were 
also changed from high to excellent, medium to average, and 
low to poor.  

TABLE IV 
 CONFUSION MATRIX FOR MULTI-CLASS ACADEMIC PERFORMANCE 

CLASSIFICATION 
 Actual/ True Class 

A B C 
Predicted 
Class 

A AA AB AC 
B BA BB BC 
C CA CB CC 

 

From Table IV, the accuracy is obtained using (1): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐴𝐴𝐴𝐴+𝐵𝐵𝐵𝐵+𝐶𝐶𝐶𝐶
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

                    (1)   
 
For imbalanced datasets, accuracy is not an appropriate 

metric because it does not distinguish between the numbers of 
correctly classified examples of the different classes [20]. The 
minority class has very little impact on the overall accuracy 
value because there are fewer samples in the minority class 
[63]. For an imbalanced dataset, the accuracy is not indicative 
of the performance of an algorithm since it always has a high 
value, regardless of what algorithm is used. The most important 
limitation is that it cannot classify the minority class, which is 
the class of interest, hence, using accuracy for the imbalanced 
dataset is unsuitable [63][64].  

Recall, also known as sensitivity, indicates the number of 
correctly identified observations from the considered class. For 
example, the recall value for the poor-performing class is the 
number of correctly predicted poor-performing students out of 
the actual poor-performing students. It can be translated to (2) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝐶𝐶
 

(1) 
 
In our work, predicting the minority class, which is 

predicting poor academic performance, is more important, 
hence, recall is the better metric to assess the effect of 

resampling algorithm performance on the recall values. An 
increase in recall decreases the probability of misclassifying a 
sample from a particular class. Therefore, it is desirable to have 
a high recall rate.  

H. Model Validation  
We used the 5-fold cross-validation, a common technique 

used to assess the performance of a machine learning model. It 
involves randomly splitting the dataset into five equal-sized 
subsamples [65]. One subsample is kept as the validation set, 
while the other four are used to train the model. The process is 
repeated five times using a different validation set. The results 
are then averaged to produce an overall estimate of model 
performance. This method helps to reduce the variance in the 
model's performance, as it is tested on multiple datasets and 
subsets of the data. 

IV. RESULTS AND DISCUSSION 
The results for all experiments are tabulated in Table V. From 

Table V, it is interesting to note that for Dataset 2, when no 
resampling was applied, the LR obtained a high accuracy of 
97%, with the recall value for the Poor class only 88%. 
However, the inclusion of resampling methods, regardless of 
the type used, increased the recall value for the Poor class to 
92%. A similar trend was observed for the KNN classifier, 
which obtained a high accuracy of 90% but only a 71% recall 
value for the Poor class before resampling. Incorporating 
resampling methods saw the recall values for the Poor class 
increase to 88% (SMOTE), 100% (ADASYN), and 88% 
(Borderline SMOTE). For clarity, Fig.2 compares the confusion 
matrix before and after ADASYN.  

To analyze the general performance across three datasets, the 
recall values of all three resampling methods (SMOTE, 
ADASYN, Borderline SMOTE) in Table V are compared 
against the recall values when no resampling was applied for 
each of the five classifiers (DT, LR, KNN, SVM, NB) across 
all three datasets summing a total of 45 observations. The result 
is then divided into three categories: Recall increase, Recall 
does not change, and Recall decrease, which is presented in 
Table VI. It can be seen from Table VI that applying ADASYN 
leads to improved recall values in 37.78% of the experiment. In 
contrast, Borderline SMOTE performed the worst when 40% of 
the experiment resulted in recall deterioration. 

There are several possible reasons why Borderline SMOTE 
may perform poorly in terms of recall. This could be because 
the method may not suit the datasets under consideration.  
Different resampling methods can have varying effectiveness 
depending on the characteristics of the data, such as the 
distribution of classes, the amount of noise, and the number of 
samples [42]. It could also be due to the method being too 
aggressive in generating synthetic samples [41]. This means 
that the Borderline SMOTE tends to produce excessive 
synthetic samples in regions where minority class examples are 
concentrated. This overemphasis on regions with a high 
concentration of minority class examples can result in the 
training data being overfitted, where the model becomes too 
closely fitted to the training data and cannot generalize to new 
data [66]. 
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(a) 

 
(b) 

Fig. 2.  Confusion Matrix of the KNN classifier with (a) no resampling and (b) ADASYN in Dataset 2 
 

TABLE V 
ACCURACY AND RECALL RESULTS FOR ALL THREE DATASETS

Resample Model Dataset 1 Dataset 2 Dataset 3 
  

Accuracy Class Recall Accuracy Class Recall Accuracy Class Recall 

No DT 0.7 Poor 0.67 0.89 Poor 0.79 0.64 Low 0.74 

Average 0.7 Average 0.9 Medium 0.56 

Excellent 0.71 Excellent 0.9 High 0.67 

LR 0.77 Poor 0.83 0.97 Poor 0.88 0.74 Low 0.89 

Average 0.77 Average 0.97 Medium 0.7 

Excellent 0.76 Excellent 1 High 0.67 

KNN 0.81 Poor 0.83 0.9 Poor 0.71 0.63 Low 0.79 

Average 0.9 Average 0.94 Medium 0.62 

Excellent 0.67 Excellent 0.9 High 0.51 

SVM 0.74 Poor 0.5 0.98 Poor 0.96 0.63 Low 0.76 

Average 0.77 Average 0.97 Medium 0.63 

Excellent 0.76 Excellent 1 High 0.51 

NB 0.84 Poor 1 0.89 Poor 0.88 0.47 Low 0.87 

Average 0.9 Average 0.88 Medium 0.13 

Excellent 0.71 Excellent 0.92 High 0.63 

SMOTE DT 0.72 Poor 0.67 0.85 Poor 0.75 0.61 Low 0.79 

Average 0.7 Average 0.87 Medium 0.52 

Excellent 0.76 Excellent 0.86 High 0.58 

LR 0.77 Poor 0.83 0.97 Poor 0.92 0.75 Low 0.89 

Average 0.77 Average 0.97 Medium 0.68 

Excellent 0.76 Excellent 1 High 0.72 

KNN 0.81 Poor 0.83 0.89 Poor 0.88 0.59 Low 0.84 

Average 0.87 Average 0.85 Medium 0.46 

Excellent 0.71 Excellent 0.94 High 0.56 

SVM 0.74 Poor 0.5 0.98 Poor 0.96 0.61 Low 0.84 

Average 0.77 Average 0.97 Medium 0.43 

Excellent 0.76 Excellent 1 High 0.67 

NB 0.82 Poor 0.83 0.83 Poor 0.58 0.47 Low 0.84 
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Resample Model Dataset 1 Dataset 2 Dataset 3 

Average 0.9 Average 0.79 Medium 0.16 

Excellent 0.71 Excellent 0.97 High 0.58 

ADASYN DT 0.72 Poor 0.67 0.89 Poor 0.79 0.72 Low 0.87 

Average 0.83 Average 0.89 Medium 0.65 

Excellent 0.57 Excellent 0.92 High 0.7 

LR 0.77 Poor 0.83 0.97 Poor 0.92 0.76 Low 0.89 

Average 0.77 Average 0.97 Medium 0.71 

Excellent 0.76 Excellent 1 High 0.72 

KNN 0.72 Poor 0.83 0.91 Poor 1 0.6 Low 0.87 

Average 0.57 Average 0.85 Medium 0.41 

Excellent 0.9 Excellent 0.99 High 0.65 

SVM 0.74 Poor 0.5 0.98 Poor 0.96 0.59 Low 0.84 

Average 0.77 Average 0.97 Medium 0.4 

Excellent 0.76 Excellent 1 High 0.65 

NB 0.77 Poor 0.67 0.85 Poor 0.79 0.47 Low 0.84 

Average 0.8 Average 0.78 Medium 0.16 

Excellent 0.76 Excellent 0.99 High 0.58 

Borderline 
SMOTE  

DT 0.79 Poor 0.67 0.88 Poor 0.71 0.63 Low 0.82 

Average 0.83 Average 0.91 Medium 0.52 

Excellent 0.76 Excellent 0.9 High 0.63 

LR 0.77 Poor 0.83 0.96 Poor 0.92 0.75 Low 0.89 

Average 0.77 Average 0.96 Medium 0.68 

Excellent 0.76 Excellent 0.99 High 0.72 

KNN 0.77 Poor 0.83 0.88 Poor 0.88 0.59 Low 0.84 

Average 0.8 Average 0.84 Medium 0.46 

Excellent 0.71 Excellent 0.96 High 0.56 

SVM 0.74 Poor 0.5 0.97 Poor 0.92 0.61 Low 0.84 

Average 0.77 Average 0.97 Medium 0.43 

Excellent 0.76 Excellent 0.99 High 0.67 

NB 0.79 Poor 0.83 0.92 Poor 0.75 0.47 Low 0.84 

Average 0.83 Average 0.97 Medium 0.16 

Excellent 0.71 Excellent 0.9 High 0.58 

TABLE VI 
COMPARISON OF RECALL VALUES FOR DIFFERENT RESAMPLING 

METHODS 
  Recall 

Increase 
(%) 

Recall does 
not change 

(%) 

Recall Decrease 
(%) 

SMOTE 28.89 37.78 33.33 

ADASYN 37.78 33.33 28.89 

Borderline 
SMOTE 

33.33 26.67 40.00 

 
Table VII compares the change in all five classifiers' recall 

values. A total of 27 experiments consisted of three classes 
(Poor, Average, and Excellent) across three datasets for all three 
resampling methods. As can be seen, LR and SVM are more 
immune to the resampling methods when more than 50% of the 

experiments resulted in no variation of the recall after 
resampling was introduced. This could be attributed to how 
SVMs learn by finding the optimal separating hyperplanes 
between classes, which is less affected by the class imbalance, 
making it more robust. On the other hand, KNN consistently 
showed improved recall values when 55.56% of the 
experiments resulted in recall increment. This is because KNN 
is more effective when the training data is balanced, as it allows 
the algorithm to determine the true neighbors of each data point 
and make more accurate predictions.  

Because we are more interested in predicting the poor-
performing students, who all belong to the minority class in all 
three datasets, so that necessary intervention can be applied, we 
zoom in on the recall performance of all resampling methods 
across all three datasets. 
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TABLE VII 

COMPARISON OF RECALL VALUES FOR DIFFERENT CLASSIFIERS 
  Recall  

Increase 
(%) 

Recall does 
not change 

(%) 

Recall  
Decrease 

(%) 
DT 40.74 22.22 37.04 
LR 22.22 59.26 18.52 
KNN 55.56 11.11 33.33 
SVM 22.22 59.26 18.52 
NB 25.93 11.11 62.96 

 
According to Table V, LR repeatedly produced the best recall 

in all three datasets, as all their recall values exceeded 80% for 
the Poor group. It is worth noting that all resampling methods 
have deteriorated recall values for the NB classifier. On the 
other hand, resampling methods seem to have no impact on LR 
and SVM since their recall values are similar before and after 
resampling was applied across all three datasets.  

V. CONCLUSION AND IMPLICATIONS OF RESEARCH. 
In conclusion, we evaluated the effectiveness of three 

popular resampling methods (SMOTE, ADASYN, Borderline 
SMOTE) in improving the recall values of a minority class, 
specifically the "Poor" class, in three datasets. To assess the  
performance of the resampling methods, we used five different 
classification algorithms (DT, LR, KNN, SVM, NB). Our 
results, as tabulated in Table V, revealed that incorporating 
resampling methods led to a significant improvement in the 
recall values of the "Poor" class, particularly for the LR and 
KNN classifiers. Notably, the ADASYN method resulted in 
improved recall values in 37.78% of the experiments. 
Conversely, we observed that the Borderline SMOTE method 
performed poorly in 40% of the experiments, resulting in a 
decline in recall values. This suggests that different resampling 
methods are not equally effective, and the choice of method 
depends on the dataset and classifier used. We also found that 
LR and SVM classifiers were more robust to the resampling 
methods, while KNN consistently showed improved recall 
values. 

The implications of this study are various. The study supports 
the idea that resampling methods can effectively enhance the 
performance of classifiers for minority classes. The study found 
that resampling methods can increase recall values for the 
minority class, as demonstrated in this study. 

The choice of resampling method is critical, as the study 
results indicate that different resampling methods can have 
varying effectiveness depending on the characteristics of the 
data. The poor performance of the Borderline SMOTE method 
in this study emphasizes the importance of selecting the 
appropriate resampling method for a specific dataset and 
classifier. 

Additionally, the study found that KNN classifiers were 
consistently more effective when the training data was 
balanced, which can be achieved through resampling methods. 
The study's findings can be useful for practitioners in 
educational settings where early intervention can be applied to 
poor-performing students.  

In future work, it would be interesting to explore other 
resampling methods, classifiers, and different evaluation 
metrics better suited for imbalanced datasets. It would also be 

interesting to study the effects of imbalanced classification on 
the performance of different learning algorithms, such as deep 
learning models, and to investigate the use of ensemble 
methods, such as XGBoost, for improving the performance on 
imbalanced datasets. 
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